skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Richesson, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Estimating flow and transport properties of porous media that undergo deformation as a result of applying an external pressure or force is important to a wide variety of processes, ranging from injecting a fracking liquid into shale formations, to CO sequestration in spent oil reservoirs. We propose a novel model for estimating the effective flow and transport properties of such porous media. Assuming that the solid matrix of a porous medium undergoes elastic deformation, and given its initial porosity before deformation, as well as the Young’s modulus of its grains, the model uses an extension of the Hertz–Mindlin theory of contact between grains to compute the new PSD that results from applying an external pressure P to the medium, and utilizes the updated PSD in the effective-medium approximation (EMA) to estimate the effective flow and transport properties at pressure P. In the present part of this series, we use the theory to predict the effective permeability as a function of the applied pressure. Comparison between the predictions and experimental data for twenty-four types of sandstones indicates excellent agreement between the two. 
    more » « less
  2. Blunt, MJ (Ed.)
    In Part I of this series, we presented a new theoretical approach for computing the effective permeability of porous media that are under deformation by a hydrostatic pressure P. Beginning with the initial pore-size distribution (PSD) of a porous medium before deformation and given the Young’s modulus and Poisson’s ratio of its grains, the model used an extension of the Hertz–Mindlin theory of contact between grains to compute the new PSD that results from applying the pressure P to the medium and utilized the updated PSD in the effective-medium approximation (EMA) to estimate the effective permeability. In the present paper, we extend the theory in order to compute the electrical conductivity of the same porous media that are saturated by brine. We account for the possible contribution of surface conduction, in order to estimate the electrical conductivity of brine-saturated porous media. We then utilize the theory to update the PSD and, hence, the pore-conductance distribution, which is then used in the EMA to predict the pressure dependence of the electrical conductivity. Comparison between the predictions and experimental data for twenty-six sandstones indicates agreement between the two that ranges from excellent to good. 
    more » « less